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LElTER TO THE EDITOR 

Percolation disorder in chromatographic systems 
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Program8 de Engenharia Quimica, COPPE, Universidade Federal do Rio de Janeiro, CP 
68502, Rio de Janeiro, RT, Brazil 

Received 30 July 1991 

Abstract. A pore space model is presented to describe the transport of mass within pore 
packings of chromatographic columns. The particle pore structure is conceptually represen- 
ted by a network of capillaries subjected to bond percolation disorder. The efficiency of 
the system is assessed io terms of a mass dispersivity fanor ( h )  which  account^ for the 
band broadening of the peak response. The results show a large dispersivity at a perwlation 
fraction near the threshold which reflects the critical properties of the structure with respect 
to connectivity and tortuosity. 

It was only recently that the percolation concepts [ 1 1  became a useful tool to quantify 
the effect of topological disorder on transport phenomena in porous media. Percolation 
networks of capillaries have been successfully used to describe the problem of diffusion 
and reaction in porous catalysts [2-51 as well as dispersion in disordered composites 
[6-81. 

In the work of Charlaix et a/ [ 9 ] ,  the capacitance model of Coats and Smith [ I O ]  
has been applied to describe anomalous dispersion curves obtained from experiments 
with consolidated porous media. This classical model is a modified version of the 
traditional convection-diffusion equation which considers the flow of fluid through a 
packed bed with stagnant pockets of fluid acting as dead spaces. Recent works by 
McGreavy et a /  [ l l ]  and Andrade et a/ [12] are directed to the representation of 
chromatographic packings in terms of a network conceptualization for the structure of 
the pellet. The model combines the Coats-Smith and network of pore approaches and 
a detailed description of the microscopic phenomenology enables the diffusional 
mechanism of mass transport to be evaluated at the capillary level of the particle in 
the packing. The results show a very strong influence of the pore structure on the 
macroscopic response of the system. In this letter, we briefly introduce the methodology 
developed by Andrade et a /  [12] which allows for bond percolation disorder in the 
network model of the particle pore space. From the results of computational simula- 
tions, the overall efficiency of the column is then analysed as a function of the allowed 
fraction of pores in the network ( p ) ,  a structural parameter. 

As shown in figure 1, the porous particles of uniform size ( I , )  are structurally 
represented by a two-dimensional square network. Cylindrical pores of constant length 
( I )  and radius (R) are randomly connected to sites of negligible volume'according to 
the percolation fraction ( p ) .  Figure 2 ( a )  shows the lattice representation of the pore 
network with the nodal enumeration scheme adopted in this formulation. The following 

0305-4470/91/231379+06$03.50 @ 1991 IOP Publishing Ltd L1379 



L1380 Letter to the Editor 

CHROMATOGRAPHIC COLUMN 

b 
/ \  

NETWORK MODEL 

Figure 1. Chromatographic column with porous particles represented by a typical percola- 
tion network. 
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Flgore 2. ( a )  Lattice representation of the particle with nodal enumeration scheme. Periodic 
boundary conditions are used to reduce the effect of finite size in the transverse direction. 
( b )  Onhogonal collocation technique with network of pores. 
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mass balance describes the diffusive transport of a tracer inside a typical pore between 
adjacent nodes {i} and { j ] :  

Jc J2c -=D,-- 
Jt  J X 2  

with the following initial and boundary conditions: 

c(x, 0)  = 0 

where c(x, t )  is the tracer concentration in the capillary, x is the capillary axial 
coordinate and D, is the tracer molecular diffusivity. The molar flux of the tracer into 
a pore from adjacent sites t i }  and { j }  is given by: 

Considering the nodes as perfect mixing points with no tracer accumulation, a mass 
conservation equation can be expressed for node { i )  as: 

i: ; { , j , = i i  (4j 

where ( i )  makes reference to the set of i-adjacent sites which are connected to the 
site { i } .  

A mass balance in the tracer concentration at the mobile phase of the column 
(C,(X, 1)) gives: 

,e(!) 

a2c, JC, JC, ( ~ - E C ) E ~ ~ + '  

ax2 J X  Jf E C V ~ S  j - 2  
DL-- (U)---- 1 J1i,j1=0 

with the following initial and boundary conditions for the entrance ( X = O )  and exit 
(X = L) of the column: 

C,(X, 0)  = 0 

..,ha-- V :- r h -  ..-I..-..- nr:"l n i o  thn A:-----:.-- --.4X..:--+ I..\ :" r l -  
W L . C . C  A 1) L l l V  W.U.II .L (LA.-, C""L"LI.(LLC, U L  ID L L l G  "'"p'CL"."LL C"FIII%,LCI.L, \", 13 L l l C  

interstitial velocity of the mobile phase and S(f )  is the Dirac function representing a 
pulse of unitary strength in concentration at the column inlet. In the summation term 
of equation ( 5 )  the subscripts refer to the capillaries at the network entry (see tigure 
2(a) ) ,  N is the network dimension, V ,  is the pore space volume and ep and are 
the particle and the column porosities respectively. The factor (1  - E ~ )  E ~ /  E~ Vps corres- 

the mobile phase. The relation between the mobile phase and the pores in the pellet 
surface can be specified by assuming that the resistance to mass transfer is negligible 
at the fluid film surrounding the extemal surface of the particle: 

pnnds !e !he reclprncd nf the extema! fluid vo!umc surrn??nding I sing!. pr?ic!e in 

c"= C f I )  (7) 



L1382 Letter to the Editor 

From the Laplace transform solution of equations (1) and (2), the transformed 
can then be expressed as a linear function of the two terminal transformed form of 

concentrations at the connected nodal points [ll-121: 

where a = (d/Dm)"' and 4 is the Laplace transform variable. This expression can be 
introduced in the transformed form of equation (4) and applied to each nodal point 
to generate a set of coupled linear algebraic equations in the transformed nodal 
concentrations. The transformed version of equation (5) is then discretized by means 
of orthogonal collocation as schematically demonstrated in figure 2 ( b )  (see reference 
[ l l ]  for numerical details). The dependence of the flux summation term in equation 
(5) on the macroscopic coordinate X is consistently considered in the numerical 
iechnique by conneciing ihe neiwork of pores io each of ihe seiecied orthogonai 
collocation points at the axia1 direction in the mobile phase. The final mathematical 
representation of the model can then be written as: 

A(d)c(o) = b (9) 
where c is the vector of transformed nodal concentrations, b is a vector obtained from 
equation (6) and A is a matrix corresponding to the coupling between the nodal mass 
balances and the orthogonal collocation coefficients [ 111. 

The matrix expansion technique presented by Koplik et al [7] is adopted here for 
the computation of the transit-time moments of the column residence time distribution. 
From the peak retention time ( F )  and variance (U') at the column exit ( X  = L), a 
dimensionless mass dispersivity factor ( h )  can be calculated as: 

h = u2/p'. (10) 
This composite index is a cumulative description of the overall mass transport in the 
system. For a given value of p, simulations have been performed with 100 realizations 
of 30 x 30 networks to produce average values of h which are representative of the 
pore structure. The parameters employed in the simulations are listed in table 1. Figure 
3 shows the dependence of h on the fraction of allowed bonds ( p )  in the lattice. At 
the percolation limit of p = 0.0 the capillaries are absent (non-porous packing) and at 
p=1.0 the network of pores is complete (well connected structure). One would 
obviously expect a higher mass dispersivity at p = 1.0 than at p = 0.0 which is compatible 
with the results shown in figure 3. The interesting feature about these simulations is a 
large value of h at p =: which is also associated with a large uncertainty arising from 

and experimentally observed [9, 14-16] for the dispersion of systems with stagnant 
zones of percolation geometry. This p value is the bond percolation threshold for 

e h n  o..-...l:..m c:...:l-- n..,.-.nl:or hnIm nlrpnrlxr hnnn nroAirtnrl r7-Q 12- 1 <1 
L l l r  " a , , , p L L L . E ,  p,"bC"".C. U..II.Im, a..".l.all~.ll .I'.... '....A.", "1s.. p.'"...-," L I - v ,  .a- '4, 

Table 1. Parameters employed in the simulations. 

Pcclel number (Pc= (v)L/Dd 1 0' 
B (=(u)I; /LD,)  10-4 
wlumn voidage (ec) 0.5 
particle porosity ( E J  0.5 

pore radius (R) 1/10 
capillary Ienglh ( I )  b / ( N  + 1 )  
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Figure 3. Dependence of h on the fraction of allowed pores ( p )  in the network. 

square networks of infinite size [17] and network configurations generated with this 
critical percolation fraction are in the vicinity of a sudden change in connectivity. As 
a consequence, pore pathways terminated by dead-end pores are very long and tortuous 
at this p value, and a maximum mass dispersivity ( h )  is observed. The wide fluctuations 
at this transition point can be explained in terms of the relatively small network 
dimension used in the simulations for reasons of computational feasibility. However, 
it does not compromise the qualitative aspect of the results and somehow emphasizes 
the critical nature of the threshold topology. 

In summary, a modelling technique bas been devised in this work which allows 
the effect of topological disorder in the pore packing on the resolution of chromato- 
graphic systems to be investigated. The percolation process proved to be the natural 
method for describing this structural influence since it provides a systematic way of 
performing changes in the connectivity and tortuosity of the particle pore space. The 
results demonstrate a significant increase in the column band broadening at a bond 
percolation fraction near the threshold. In design or selection of chromatographic 
packings this fact might be taken into consideration since it reflects negatively on the 
performance of the system. It also reinforces the potentialities of chromatography as 
a practical tool for topological identification and characterization of disordered pore 
StNctUreS. 

The author J S Andrade Jr wishes to express his gratitude to the Brazilian agency 
CNPq for financial support. 

References 

[ I ]  Slauffer D Infrodudon Lo Percolorion Theory (London: Taylor and Francis) 
[21 Sahimi M and Tsotsis T T 1985 1. C o r d  96 552 



L1384 Letter to the Editor 

131 Mohanty K K, Ottino J M and Davis H T 1982 Chem Eng. Sei 37 905 
[4] MO W T and Wei J 1986 Chem. Eng. Sei 41 703 
[SI Sahimi M, Gavalas G Rand Tsotsis T T 1990 Chem. Eng. Sei. 45 1443 
[6] Sahimi M, Hughes B D, Scriven L E and Davies H T 1986 Chem. Eng. Sci 41 2103 
[7] Koplik J, Redner S and Wilkinron D 1988 Phyj. Ren A 37 2619 
[8] Roux S and Guyan E 1987 Eumphys. Lell. 4 175 
[9] Charlaix E, H u h  J P and Plona T J 1987 Phys. Fluids M I690 
[IO] Coats K H and Smith B D 1964 SOL Pel. Eng. J, AIME 231 73 
[ I l l  McGrcavy C, Andrade J S Jr and Rajagopal K 1990 Chromatographia 30 639 
[I21 Andrade J S Jr, Rajagopal K and McGreavy C 1991 Chmmolographia in press 
[I31 de Gcnncs P G 1983 1. Fluid Mech. 136 189 
[I41 Gist G A, Thompson A H ,  KaU A J and Higgins R L I990 Phys Fluids A 2 1533 
[IS] Bacn I-C, Rosen M and Salin D 1990 Eumphys. Lm. I1 127 
[I61 Bacri J-C, Rakatamalala N and Salin D 1987 Phys. Rev. Lerr. 58 2035 
[I71 Kesten H 1980 Commun. Math. Phyr. 41 74 


